BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN VOL. 43 1588—1589 (1970)

Preparation of Tricarbonyliron- μ -Carbonyl- μ -Diphenylphosphido- π -Cyclopentadienylnickel*¹

Katsutoshi Yasufuku and Hiroshi Yamazaki

The Institute of Physical and Chemical Research, Yamato-machi, Saitama

(Received November 17, 1969)

Since hexacarbonyl-π-cyclopentadienylmolybdenum-π-cyclopentadienyltungsten was reported by Abel,¹⁾ many efforts have been made for the preparation of mixed transition-metal complexes with metal-metal bond.²⁾ The complexes were mostly mixed metal carbonyls in which metals are bonded only with a metal-metal bond. Tricarbonyl - π - cyclopentadienyliron - π - cyclopentadienyliron-ickel³⁾ and monocarbonyl- π -cyclopentadienyliron- μ -dicarbonyl-tricarbonylcobalt⁴⁾ belong to a few complexes which consist of a metal-metal bond and

^{*1} Paper I in a series of "Chemistry of Mixed Transition-Metal Complexes."

¹⁾ E. W. Abel, Apar Singh and G. Wilkinson, J. Chem. Soc., **1960**, 1321.

²⁾ N. S. Vyazankin, C. A. Razuvaev and O. A. Kruglaya, Organometal. Chem. Rev., A3, 323 (1968).

³⁾ J. F. Tilney-Bassett, J. Chem. Soc., 1963, 4784.

⁴⁾ J. K. Joshi and P. L. Pauson, Z. Naturforsch., B, 17, 565 (1962).

bridged carbonyls. Recently, Thompson⁵⁾ reported the synthesis of a new class of heterodinuclear transition-metal complexes joined by a metalmetal bond and a single phosphorus bridge by the reaction of tetracarbonyldiphenylphosphineiron with π -allyltricarbonylmanganese, -cobalt and π -allylpalladium chloride dimer.

In the present paper, we wish to report the preparation of a new mixed transition-metal complex consisting of iron and nickel which are bonded with a metal-metal bond, and with a bridged phosphido and a bridged carbonyl groups.

Experimental and Results

 π -Cyclopentadienyltriphenylphosphinenickel chloride (1 g)⁶⁾ and 0.8 g of tetracarbonyldiphenylphosphineiron (I)⁷⁾ were allowed to react with excess diethylamine in methylene chloride at room temperature for two days. The reaction mixture was concentrated and subjected to chromatography on alumina with hexane-methylene chloride mixture as an eluent. Concentration of the brown eluate gave 0.41 g of brown cyrstals, mp*2 150—152°C, (Yield 45%. Found: C, 52.93; 3.30%. Calcd for C₂₁H₁₅O₄PFeNi: C, 52.90; H, 3.17%) The X-ray emission spectrum*3 indicated bands corresponding to NiKα at 51°34′, to FeKα at 61°08′ and PKα at 54°54′.

The same product was obtained in 25% yield by a similar treatment from π -cyclopentadienylcarbonylnickel iodide (prepared by method of Schropp⁸⁾) and I in benzene with excess diethylamine at 0°C for four hours and at room temperature for two days.

$$\pi\text{-}\mathrm{C_5H_5Ni}(\mathrm{PPh_3})\mathrm{Cl}$$

 $\begin{array}{l} \pi\text{-}\mathrm{C_5H_5Ni(CO)I} \,+\, \mathrm{HPh_2PFe(CO)_4} \,\to\, \mathrm{C_{21}H_{15}O_4PFeNi} \\ \mathrm{or} & (\mathrm{I}) \\ (\pi\text{-}\mathrm{C_5H_5)_2Ni} \end{array}$

IR spectrum of the product showed the presence of terminal carbonyls and a bridged carbonyl both in KBr disk and in solutions as shown in Table 1. NMR spectrum (in CDCl₃) indicated signals of phenyl protons at $2.2-2.8\tau$ and of cyclopentadienyl protons at 4.58τ . In mass spectrum,*4 the molecular peak consisting of 58 Ni and 56 Fe (which are the

*2 Measured on hot-stage apparatus.

TABLE 1. IR SPECTRUM OF II IN THE VCO REGION

Solvent	$v_{\rm CO}$ cm ⁻¹				
	terminal CO			bridged CO	
KBr Hexane CH ₂ Cl ₂ CS ₂ THF	2030 s 2032 s	2018 s 1990 s 1985 s 1986 s 1965 s	1970 s 1972 s	1956 s	1814 s 1840 s 1820 s 1830 s 1825 s

most abundant isotopic combination) appeared at m/e 476 (Calcd Mol Wt, 476) followed by peaks corresponding to successive loss of carbonyls as shown in Table 2. The peak at m/e 364 (C_5H_5 NiPPh₂Fe⁺) was the most abundant.

Table 2. Mass spectrum of II (only peaks consisting of ⁵⁸Ni and ⁵⁶Fe)

Fragment	m/e	Relative intensity
$\begin{array}{c} M^+ \\ (M-2CO)^+ \\ (M-3CO)^+ \\ (M-4CO)^+ \\ (M-4CO-C_6H_6)^+ \\ (M-4CO-C_6H_6-H_2)^+ \end{array}$	476 420 392 364 286 284	24 22 11 100 22 20

These spectral data suggest structure II for the present complex. It had been noted that the infrared spectra of octacarbonyldicobalt⁹⁾ and dicarbonyl- π -cyclopentadienyliron dimer¹⁰⁾ are markedly dependent on solvent in the $\nu_{\rm CO}$ region and the structure in solution differs from that in crystalline state. Although the other structure III seems to be plausible as seen in the complexes obtained by Thompson,⁵⁾ the IR spectra in various solvents indicated no serious transformation in the $\nu_{\rm CO}$ region showing the absence of any contribution of structure III even in solution.

II was also obtained in 35% yield by the reaction of I with nickelocene in tetrahydrofuran at room temperature for a week. The reaction did not occur in benzene or in methylene chloride solutions. In contrast to the high reactivity of the π -allyl complexes of cobalt, manganese and palladium with I,5 π -allyl- π -cyclopentadienylnickel was much less reactive and gave II only in a low yield (<2%).

II is very stable in air, especially in solid state and is soluble in most organic solvents.

We thank Dr. Yasuo Takahashi and Mr. Sakae Satooka for measurement of the X-ray emission spectrum and the mass spectrum.

⁵⁾ B. C. Benson, R. Jackson, K. K. Joshi and D. T. Thompson, *Chem. Commun.*, **1968**, 1506.

⁶⁾ H. Yamazaki, T. Nishido, Y. Matsumoto, S. Sumida and N. Hagihara, *J. Organometal. Chem.*, **6**, 86 (1966).

J. G. Smith and D. T. Thompson, J. Chem. Soc., A, 1967, 1694.

^{*8} Measured by JEOL Primary X-ray Analyzer Type JPX-3 with KAP.

⁸⁾ W. K. Schropp, J. Inorg. Nucl. Chem., 24, 1690 (1962).

^{*4} Measured by JEOL Mass Spectrometer Type JPS-1S at 75eV.

⁹⁾ K. Noack, Spectrochim. Acta, 19, 1925 (1963).

¹⁰⁾ F. A. Cotton, H. Stammreich and G. Wilkinson, J. Inorg. Nucl. Chem., 9, 3 (1959).